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Democratization of Electric Vehicle Charging 
Infrastructure: Analyzing EV Adoption by Vehicle and 
Household Characteristics Using Synthetic Populations 

EXECUTIVE SUMMARY 

The path to transportation decarbonization will rely heavily on electric vehicles (EVs) in the 
United States. EV diffusion forecasting tools are necessary to predict the impacts of EVs on local 
energy demand and environmental quality, yet few EV adoption models operate at a fine 
spatial scale. Those that do still rely on aggregated instead of local demographic information. To 
examine EV adoption at fine spatial and demographic scale, we develop an adoption model that 
employs a synthetic population, one of the first attempts of its kind. We develop a 
representative set of households for the state of California, enrich this population with 
additional variables, then use this population to forecast EV adoption in two scenarios by 
vehicle body type.  

We develop a synthetic population at the resolution of Census Tract levels to accurately 
represents regional totals for various sociodemographic variables, such as income, housing, and 
vehicle count, while also containing a representative set of individual households. Then we 
enriched this synthetic population with vehicle body types (for the two most-driven vehicles in 
a household) and access to home-charging.  

We focus our analysis on vehicle body type preference, enriching households in our synthetic 
population with vehicle body types and considering scenarios in which the EV body type 
offerings differ. Body type preference is important to consider with regards to EV adoption 
because it changes which households adopt EVs, how they use EVs, and how they charge EVs. 
SUVs and trucks are more likely to belong to rural households and less likely to be used for 
commuting when compared to sedans. Yet, they will likely have larger energy needs as they will 
be larger and less efficient than sedans. Most EVs sold to-date are sedans, but many EV SUVs 
and trucks are quickly entering the market. As the mix of EV body types changes, EVs will 
concentrate in different areas and be used differently. 

We consider the effect of vehicle body type on EV spatial distribution and home-charging 
access in California. We examine two EV body type mixes in a high electrification scenario for 
California: one with a low number of EV trucks, SUVs, and vans and one with a high number. 
Both scenarios are termed high electrification because we consider 8 million EVs distributed 
across 6 million households. In the first scenario, “Small Vehicles,” 6 million EVs are EVs are 
passenger cars and 2 million EVs are trucks, SUVs, or vans. In the second scenario, “Large 
Vehicles,” there are 4 million EVs of each category. 

We find that an electrification scenario with more electric trucks and SUVs serves to distribute 
electrified households more evenly throughout the state. Households with one or two EVs shift 
from major population centers like Los Angeles and San Francisco to lower-density communities 
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around the state especially in Northern California and the Central Valley. Home-charging access 
changes marginally between the two scenarios, increasing in both (1) urban and rural counties 
and (2) disadvantaged and non-disadvantaged communities. This likely occurs because the 
households that can own SUVs and trucks are also more likely to live in single-family homes.  
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Introduction 

Decarbonizing transportation will require replacing current vehicles with zero-emission 
vehicles, particularly plug-in electric vehicles (EVs). Essential to climate change mitigation, EVs 
are also critical to decreasing local air pollution which disproportionately harms disadvantaged 
communities (DACs) and communities of color. While EV adoption has accelerated worldwide in 
the last decade, EVs in the United States heavily concentrate in the cities and wealthy suburbs 
of California and other states that have aggressively pushed for electrification. Today’s EVs are 
also disproportionately likely to be used for commuting, likely both because they are cheaper to 
operate per mile and because EV manufacturing has focused on cars rather than trucks and 
sport utility vehicles (SUVs). The continuing expansion of private transportation electrification 
will require expanding the appeal of EVs in rural areas and for non-commute uses. 

Most US EV studies focus on broad regional analysis either of individual states or the whole 
country, but infrastructure planning requires a more granular scale understanding of how EVs 
will be spatially distributed and who will have access to them. Synthetic population modelling 
makes it possible to address these needs by creating detailed and representative data about 
households at a fine spatial scale. Forecasting EV spatial distribution is also important because 
EVs can have significant and possibly negative effects on local grids (1). As new EV body types 
enter the market, the risk of these effects increases. Newer, larger electric trucks and SUVs will 
have greater energy needs and will amplify both the positive and adverse effects of today’s EVs. 
Finally, while many studies examine electrifying the first vehicle in a household, few look at 
electrifying the rest of a household fleet. Multi-EV households face additional charging 
constraints and have the potential to exacerbate local energy supply shortfalls.  

To understand where EVs will be purchased and how they will be used, it is vital to have an 
accurate picture of the relationships between households and vehicle types throughout the 
study area. EVs in the US are currently concentrated in homogenous, high-income households, 
but middle-income households will make the majority in the future (2). These consumers will 
be more heterogeneous and more limited by factors such as income, home ownership, home 
type, and vehicle preference. To include this information in our analysis, we developed a 
synthetic population of California households at the level of Census Tracts. Population synthesis 
is often used for agent-based transportation models, but this is one of its first applications in EV 
diffusion. It is the only way to consider EV adoption at the household-level. To ensure that the 
environmental and economic benefits of EVs are equitably distributed, it is important to 
examine EV adoption at fine spatial and demographic scale. 

In this report, we present a Census-Tract-level synthetic population of California households 
designed for use in EV adoption modeling and use this dataset to compare two EV adoption 
scenarios. This paper follows a five-stage modelling process shown in Figure 1. First, we 
generate a synthetic population of households for California at the spatial resolution of Census 
Tracts; this population accurately represents regional totals for various sociodemographic 
variables while also containing a representative set of individual households. Second, we assign 
body type to each vehicle in all household fleets. Third, we assign the ability to charge an EV at 
home based on housing type and tenure. Fourth, we assign households an adoption likelihood 
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score based on their ability to afford relatively new, expensive vehicles and their ability to 
integrate EVs into their household fleet. Finally, we simulate the electrification of the first and 
second vehicles in these households. 

We apply this model to examine how the first 8 million EVs in California will be distributed in 
two scenarios: a “Small Vehicles” scenario when passenger cars outnumber large vehicles 3:1 
and a “Large Vehicles” scenario when larger EVs account for half the new EVs in the state. We 
group larger vehicles like light-duty trucks, SUVs, and vans under the category “trucks and 
SUVS” and sedans and small hatchbacks under “passenger cars”. While we focus on California in 
this paper, we rely exclusively on data available throughout the US, and the process can be 
modified for any US region. 

 

Figure 1. The five-stage modeling process. Datasets are represented by boxes and processes 
by circles. The final output is a list of households with 1-2 EVs. Key - ACS: American 
Community Survey, PUMS: ACS Public Use Microdata Samples, NREL Survey: National 
Renewable Energy Laboratory Survey on home-charging and NHTS: National Household 
Travel Survey. 

Background 

Existing EV adoption studies generally work at coarse spatial scales or with highly aggregated 
models of the population. Reviews of these studies identify three main categories of methods: 
aggregate models for adoption by country or state, disaggregate models for adoption by 
household category within a country or state, and agent-based models that examine household 
and individual choices, with a trend towards disaggregated and agent-based models in recent 
years (3, 4). These recent models more frequently operate at the household-level with agents 
assigned randomly to demographic categories (5–7), or with representative agents developed 
through synthetic population methods (8–10). While disaggregated models work at a finer level 
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of spatial precision than aggregate national models, they are generally still too coarse to use for 
local infrastructure planning.  

Modeling a representative set of households at the Census Tract level enables us to link 
regional variation in home-charging access and demographics to EV ownership, and to effects 
on local electricity demand. Many of the household-level models can account for changing 
vehicle attributes and policy over time, but often they cannot identify spatial clustering of EV 
adoption in the US (5–12). The few existing models that work at a very fine spatial scale 
exclusively use the aggregate characteristics of study sites to assign EVs rather than addressing 
household EV adoption directly (13). This paper extends the disaggregated approach to focus 
on households and intraregional adoption variability at fine spatial resolution.   

Vehicle preference and local demographics can be connected to predict where EV ownership 
will concentrate as different EV body types enter the market. To date, most EVs purchased are 
passenger cars despite US consumers favoring larger trucks and SUVs (14, 15). With 
improvements in battery technology and increases in demand, many electric models of SUVs 
and trucks are set to launch over the next decade. The impact on EV adoption is uncertain, but 
likely to significantly change the ways EVs are used. Passenger cars are used for commuting at a 
higher rate than trucks and SUVs, and EVs are used for commuting at an even higher rate than 
internal combustion engine vehicle (ICEV) passenger cars (13). Consequently, significant 
changes in the body types of EVs available might substantially change the ways EVs are used 
and charged (16). Commute trips are predictable and stays at destinations are long enough that 
they are currently a major source of EV charging. However, EVs that are not used for 
commuting may not have access to a comparable charging option away from home. In this 
study, we explore the differences in the spatial pattern of EV adoptions between a scenario 
where EV production remains focused on passenger cars and one where electric trucks and 
SUVs make up a much larger share than they do now. 

In addition to its relevance to charging infrastructure planning, the spatial distribution of EV 
ownership is tightly linked to equity concerns about access to EVs and the distribution of local 
air quality benefits. EV ownership is currently highest in cities and wealthy suburbs, and EV 
ownership rates in rural parts of California are extremely low (13). Existing studies of EV 
ownership in DACs have found that in areas with low incomes and relatively high EV ownership 
rates, these EVs are purchased by wealthier households that are generally not representative of 
the area as a whole (17). While EVs currently have much higher purchase prices than 
comparable ICEVs, the price difference is dropping, largely because batteries are becoming less 
expensive. Still, new vehicles of all types are primarily owned by wealthier households, so the 
wide availability of used EVs may be a precondition of expanding EV ownership among low-
income households. While purchase price remains a significant barrier, the economic and 
environmental benefits of EVs are unlikely to be equitably distributed without policy 
intervention. 
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Data 

Data used in this paper comes from three main nationwide sources, which ensures that the 
methods described in this paper are applicable beyond California. The 2015–2019 five-year 
American Community Survey (ACS) summary tables and associated Public Use Microdata 
Samples (PUMS) were used for synthetic population generation (18, 19). ACS aggregated 
estimates by Census Tracts were used for marginal distributions while the PUMS served as 
sample data. Home-charging probabilities were taken from a nationwide National Renewable 
Energy Laboratory (NREL) survey on residential charging access (20).  

The 2017 National Household Travel Survey, or NHTS (21), was used to model the body types of 
household vehicles. This survey contains demographic, travel behavior, and vehicle ownership 
data from 113,973 households drawn from throughout the United States. Table 1 summarizes 
the NHTS variables and categories examined when developing the vehicle assignment models.  

Table 1. Summary of NHTS household data used to develop models for vehicle body type 
assignment 

Variable Category 1 Vehicle 2 Vehicle 3 Vehicle 4+ Vehicle 

 Total 38,838 49,398 17,972 7,765 

Vehicle 1  

Car 23,789 23,874 8,555 3,703 
SUV 9,736 14,987 5,055 2,102 

Truck 3,400 7,431 3,255 1,507 
Van 1,913 3,106 1,107 453 

Vehicle 2  

Car - 23,827 8,525 3,792 

SUV - 11,887 4,313 1,773 
Truck - 11,119 4,107 1,781 

Van - 2,565 1,027 419 

Census Region  

West 18,916 12,088 4,695 2,133 

Northeast 10,920 7,529 2,450 941 

Midwest 12,025 7,984 2,805 1,236 
South 33,274 21,797 8,022 3,455 

Population 
Density  

(persons per  
sq mi)  

0-99 12,796 7,237 3,645 1,914 
100-499 14,419 8,780 3,832 1,807 

500-999 7,456 4,901 1,768 787 

1,000-1,999 10,131 6,919 2,285 927 

2,000-3,999 13,660 9,526 3,019 1,115 

4,000-9,999 14,054 10,030 2,966 1,058 
Over 10,000 2,619 2,005 457 157 

Housing Tenure 
Own 65,761 41,930 16,510 7,321 

Rent 9,374 7,468 1,462 444 
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Variable Category 1 Vehicle 2 Vehicle 3 Vehicle 4+ Vehicle 

Household Size  

1 6,583 5,206 1,027 350 

2 41,410 30,145 8,485 2,780 

3 12,207 5,985 4,471 1,751 

4 or more 14,935 8,062 3,989 2,884 

Worker Count  

0 19,043 14,427 3,505 1,111 
1 23,025 16,012 5,210 1,803 

2 28,295 18,320 7,173 2,802 

3 or more 4,772 639 2,084 2,049 

Household 
Income  

< $25k 6,154 4,641 1,119 394 

$25-35k 5,323 3,921 1,041 361 
$35-50k 8,218 5,859 1,755 604 

$50-75k 14,354 9,727 3,289 1,338 

$75-100k 12,506 8,107 3,047 1,352 

$100-125k 10,350 6,414 2,728 1,208 

$125-150k 5,927 3,579 1,586 762 
$150-200k 5,975 3,605 1,578 792 

>$200k 6,328 3,545 1,829 954 

Methodology 

This study is divided into the following modules: population synthesis & home-charging 
determination, vehicle body type assignment, and electrification.  

Population Synthesis & Home-Charging Determination 

Household-level models are most useful when the data they are built on is an accurate 
representation of the population being studied. As complete regional population data is 
generally unavailable, many activity-based travel demand models begin by generating a 
synthetic model of the region’s population (22–24). The population generation process uses a 
sample dataset of household-level microdata and regional distributions for variables for the 
population being modeled to generate a representative population, which is input into 
successive stages of the model.  

The synthetic population used in this paper was generated using the population synthesizer 
PopGen (25), an open-source program developed by the Mobility Analytics Research Group at 
Arizona State University. This software controls for both individual- and household-level 
distributions in the synthesis process by using iterative proportional fitting (IPF) and iterative 
proportional updating (IPU) algorithms.  IPF is a process for generating weights for a seed 
dataset that produce marginal distributions most closely matching the respective marginal 
distributions for a range of demographic variables. In this study, the seed dataset is drawn from 
the PUMS, which contains detailed information about a set of real households surveyed as part 
of ACS, with spatial data at the level of Public Use Microdata Areas (PUMAs). Our marginal 
distributions are counts of households and people for individual Census Tracts in the ACS. IPU 
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extends IPF by matching marginal distributions for both households and people simultaneously; 
IPU alternates between person-level and household-level IPF steps in order to minimize the 
total error. IPF is a well-established method for synthetic population generation, and the 
combined IPF-IPU approach is an increasingly popular solution for the need to match multiple 
levels of seed data (25, 26). In this study, we utilize a synthetic population model at a broader 
spatial aggregation level, rather than the typical parcel level used in most activity-based travel 
demand simulations. Additionally, our method incorporates Monte Carlo simulation, which is 
central to our analysis but not typically associated with synthetic populations. These key 
methodological choices are crucial for understanding the approach and results of this study. 

The ACS and PUMS datasets served as the marginal and sample seed data (18, 19). The 
following household variables and levels were used: 

• Vehicle Count (None, 1, 2, 3 or 4+) 

• Income (< $10k, $10-15k, $15-25k, $25-35k, $35-50k, $50-75k, $75-100k, $100-125k, 
$125-150k, $150-200k, > $200k) 

• Housing Type (Single-Family Detached, Single-Family Attached, Apartment, or Mobile 
Home) 

• Housing Tenure (Own or Rent)  

• Worker Count (None, 1, 2, 3+) 

• Household Size (1, 2, 3, 4+) 

• Additionally, one person-level variable was included: gender/age status which had three 
levels: adult female, adult male, and minor.  

Synthetic population generation is the only way to examine interactions between several 
important variables for electrification, since the ACS does not contain cross-tabulations for 
many of the household variables we use. Income, vehicle count, housing type, and tenure are 
well-known predictors of both EV adoption and access to home-charging (2, 12, 20, 27). 
Workplace charging is the most utilized type of charging after home charging and regular trips 
are well-suited for limited-range EVs, thus we use worker count as a proxy in this synthetic 
population (12, 28, 29). Lastly, household size is a crucial variable to include as it’s an important 
indicator for vehicle body type preference (30). 

Most current users of EVs charge their vehicles at home, and the ability to charge at home is 
strongly linked to EV adoption (12, 31). To incorporate home-charging access into our EV 
adoption model, we use information from a NREL study (20) based on a nationwide survey of 
residential charging capability to randomly assign home charging based on housing type and 
tenure. The study estimates the fraction of households that can or could charge an EV at home 
under a range of circumstances. Homeowners are assumed to be able to install chargers if 
space is available, so their home-charging probability is set based on the share of vehicles that 
either already park near electricity, could possibly install a charger at their parking location, or 
could change their parking to a location where they could install a charger. Renters are 
assumed not to be able to modify their property, so people who already can or could park near 
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electricity are considered. The following charging probabilities were used to randomly assign 
home charging ability based on housing type and tenure: 

• Single detached: Own (89%) and Rent (72%) 

• Single attached: Own (70%) and Rent (53%) 

• Apartment: Both (25%) 

• Mobile Home: Both (59%) 

Vehicle Body Type Assignment 

The vehicle assignment module generates vehicle body types in a household fleet. The available 
types included passenger cars, SUVs, light-duty trucks, and vans. Single-vehicle and multi-
vehicle households were considered separately, using data from the NHTS (21).  

A single multinomial logistic (MNL) model was used for single-vehicle households while two 
sequential MNL models were used to predict the body types of the two most-driven vehicles in 
a multi-vehicle household. Vehicles in multi-vehicle households were ordered by decreasing 
vehicle miles travelled (VMT), such that the most-driven vehicle was classified as vehicle one. In 
cases where the same annual travel was reported for multiple vehicles, vehicle model year was 
used to break ties, with newer vehicles ranked higher. This ordering was chosen because EVs 
generally have lower operating costs than ICEVs and are more likely to be used for high-mileage 
activities like commuting. 

Model variables were selected using a 10-fold cross-validation process minimizing mean 
residual deviance to ensure that the models provided useful predictions both in-sample and 
out-of-sample. Population density and household size were selected for all three models. Both 
multi-vehicle household models also included household vehicle count, while the second 
vehicle model included the first vehicle type as in input. The assignment models were applied 
to each household generated in the previous module. Figure 2 depicts the workflow of the 
assignment process.  
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Figure 2. Vehicle body type assignment workflow. Each vehicle-holding household in the 
synthetic population is classified as a single- or multi-vehicle household and separate models 
are applied to each type. Body type of the first vehicle is determined before the second 
vehicle is assigned in multi-vehicle households. Input demographic variables are listed in 
yellow. 

Electrification 

Finally, we use this synthetic population of households and vehicles to explore the differences 
in spatial distribution of EVs between two scenarios for light-duty vehicle electrification. The EV 
assignment process follows the process outlined in Figure 3. Households are first separated into 
groups based on the body type of their first vehicle. First EVs are assigned using a weighted 
random sampling process, using weights prioritizing households that can more easily afford to 
buy an EV. Next, EV households are sorted into new groups based on the body type of their 
second vehicle and the random sampling process is repeated to assign second EVs. To explore a 
wide range of possible outcomes, we run the entire process repeatedly as a Monte Carlo 
simulation. Our results represent the average value across 100 Monte Carlo replicates, and we 
also assessed the range of results across simulations to get a sense of the uncertainty in the 
model.  
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Figure 3. Vehicle electrification workflow. First and second vehicles are considered 
separately, and only households that have been assigned an EV as their first vehicle are 
considered for receiving an EV as their second vehicle. 

We consider two electrification scenarios that match California's target of having 8 million EVs 
on the road by 2030 (a milestone on the path to 100% light-duty ZEV sales by 2035) but are 
differentiated by the mix of body types purchased (32). The “Small Vehicles” scenario posits 
that EV production will continue to emphasize small commute vehicles (13); in this scenario, we 
assign 6 million electric sedans and small hatchbacks, 1 million electric SUVs, and half a million 
each of electric trucks and vans. The second scenario considers a more mixed future where EV 
production more closely matches the ICEV fleet; in this scenario, we assign 4 million electric 
passenger cars, 2 million electric SUVs, and 1 million each are trucks and vans. In both cases, we 
assign 6 million EVs as first vehicles and 2 million EVs as second vehicles to households that 
already have an EV. 

Households were chosen for electrification using a weighted random sampling process. Weights 
reflect the likelihood that a household could afford to purchase an EV, the benefit that they 
would get from having an EV, and the barriers that they might face when choosing an EV over 
an ICEV. Because forecasting vehicle purchase decisions a decade early involves a great deal of 
uncertainty, the EV adoption model is kept relatively simple and emphasizes variables existing 
studies identify as key controls on EV adoption. Income is chosen as the largest driver because 
most of the EVs will be relatively new in 2030: the path to 8 million EVs requires sales to 
increase rapidly in the last few years of the decade and most of these vehicles will still be very 
new in 2030. Weights are higher for households with more vehicles because they may more 
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easily incorporate a limited-range EV into their household fleet since they will have backup 
ICEVs (33). The ability to charge vehicles at home greatly increases the convenience of owning 
an EV, so households with EV charging capability and single-family detached houses, which 
generally have larger garages, are assigned higher weights. Finally, households with workers are 
given a slightly higher weight because EVs’ lower operating costs and possible ability to 
recharge at commute destinations makes them particularly suited for commute use. While the 
barriers to adopting a first EV are likely different from the barriers to adding a second EV if you 
already own one, we use the same sampling weights for both assignments in the interest of 
simplicity. 

Electrification weights are divided into four categories: income, which controls 50% of each 
household’s sampling weight; vehicle count, 20%; housing type / home charging, 20%; and all 
other variables, which together control 10% of the household weight. The full set of weights 
within each category is shown in Table 2. Each household’s overall sampling weight is equal to 
the sum of the weights across all values. For example, a household with an income of $100,000 
(20% weight), 3 household vehicles (16%), containing multiple workers employed outside the 
home (5%), and who own (5%) a single-family detached house (10%) with charging available 
(10%), would have a total electrification weight of 66%. This weight would make them twice as 
likely to be selected for electrification as a household with a weight of 33% if only one 
household was being selected. However, the scenarios in this study cover nearly half of all 
households in California, and resultingly many lower-weight households will be selected.  
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Table 2. Household Electrification Weights 

Category Variable Value Score Weight 

Income (50%) Household Income 

Less than $10,000 1 2% 
$10,000 to $14,999 1 2% 

$15,000 to $24,999 2 4% 

$25,000 to $34,999 2 4% 
$35,000 to $49,999 4 8% 

$50,000 to $74,999 6 12% 
$75,000 to $99,999 8 16% 

$100,000 to $124,999 10 20% 

$125,000 to $149,999 15 30% 
$150,000 to $199,999 20 40% 

$200,000 or more 25 50% 

Vehicle Count 
(20%) 

Total Household 
Vehicles 

No vehicle available 1 2% 

1 vehicle available 1 2% 

2 vehicles available 4 8% 
3 vehicles available 8 16% 

4 or more vehicles 
available 

10 20% 

Housing Type and 
Charging (20%) 

Housing Type 

Mobile Home 1 1% 
Apartment 2 2% 

Single-Family Attached 5 5% 

Single-Family Detached 10 10% 

Home Charging Ability 
No home charging 1 1% 

Home charging available 10 10% 

All Others (10%) 

Housing Tenure 
Rent 1 3% 

Own 2 5% 

Workers 

No workers 1 2% 

1 worker 3 5% 

2 workers 3 5% 
3 or more workers 3 5% 
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Results 

Synthetic Population & Charging Determination 

The results of the population synthesis are summarized in Table 3.  Overall, the synthetic 
population performed well at replicating known aggregate distributions in the actual 
population. The number of households synthesized exactly matched the total number of 
households in the state for ACS estimates at 13,044,266 households. All household-level 
synthesized marginals were extremely accurate and within -0.06–0.1% of the statewide values 
despite a total of 7,040 distinct constraints. At the PUMA level, synthesized household 
marginals were within -0.4%- 0.5% of actual marginals. At the Census-Tract-level, synthesized 
marginals were also generally small: median error was under 2.5% for all household variables 
and the 90th percentile error was under 20% for all variables. The population generation was 
more imprecise with the person-level marginals and underpredicted individuals, despite 
matching the household size variable. Dividing the category 4-or-more Person Household into 
separate groups could resolve this, but person-level accuracy was not essential for our 
household-level adoption model.  

Households in the synthetic population were randomly assigned home-charging access based 
on the process described in the Methods section. Ultimately, 63.9% of synthesized households 
were assigned access to residential charging, with 58.6% of DAC and 65.4% of non-DAC 
households having access.   
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Table 3. Results of Population Synthesis  

Category Definition Actual Synthesized % Difference 

Household-Level Variables 

Vehicle Count        
 No vehicle available 927,957 928,868 0.10% 
 1 vehicle available 3,968,129 3,970,574 0.06% 
 2 vehicles available 4,851,748 4,850,047 -0.04% 
 3 vehicles available 2,113,467 2,112,552 -0.04% 

 
4 or more vehicles 
available 

1,182,965 1,182,225 -0.06% 

Income       
 Less than $10,000 628,526 628,675 0.02% 
 $10,000 to $14,999 534,197 534,600 0.08% 
 $15,000 to $24,999 975,904 976,534 0.06% 
 $25,000 to $34,999 979,245 979,608 0.04% 
 $35,000 to $49,999 1,363,211 1,363,587 0.03% 
 $50,000 to $74,999 2,022,818 2,022,914 0.00% 
 $75,000 to $99,999 1,620,466 1,620,323 -0.01% 
 $100,000 to $124,999 1,264,447 1,264,273 -0.01% 
 $125,000 to $149,999 904,574 904,010 -0.06% 
 $150,000 to $199,999 1,164,827 1,164,136 -0.06% 
 $200,000 or more 1,586,051 1,585,606 -0.03% 

Housing Type       
 Single detached 7,593,962 7,593,417 -0.01% 
 Single attached 928,948 929,069 0.01% 
 Apartment 4,058,922 4,059,455 0.01% 
 Mobile Home 462,434 462,325 -0.02% 

Housing Tenure       
 Own 7,154,580 7,154,175 -0.01% 
 Rent 5,889,686 5,890,091 0.01% 

Worker Count       
 No workers 3,068,280 3,070,902 0.09% 
 1 worker 4,850,157 4,848,943 -0.03% 
 2 workers 3,854,073 3,852,977 -0.03% 
 3 or more workers 1,271,756 1,271,444 -0.02% 

Household Size       
 1-person household 3,106,104 3,105,827 -0.01% 
 2-person household 3,967,889 3,967,706 0.00% 
 3-person household 2,177,312 2,176,903 -0.02% 

 
4-or-more person 
household 

3,792,961 3,793,830 0.02% 
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Category Definition Actual Synthesized % Difference 

Person-Level Variables 

Gender/Age       
 Adult Female 15,345,949 13,708,293 -10.67% 
 Adult Male 14,915,402 13,590,113 -8.89% 
 Minor 9,022,146 8,887,204 -1.50% 

Vehicle Body Type Assignment  

Table 4 and Table 5 summarize the coefficients, standard errors, and residual deviance for all 
vehicle assignment models. Three models were developed, one for single vehicle households 
(Table 4) and two for the first two vehicles in a multi-vehicle household (Table 5). “Cars” were 
used as the reference vehicle type and the base category for each variable is listed in 
parentheses. A “-“ entry indicates that a particular explanatory variable was not an input for a 
particular model.  

The model parameters indicate that passenger cars are generally the most preferred vehicle 
type while vans are the least. As household size increases, SUVs and vans gain preference over 
trucks. While cars are preferred to larger vehicles with increasing population density, trucks are 
more popular than other large vehicle types at low densities. The relationship between vehicle 
count and earlier vehicles is more complex with some preference for mixed vehicle type 
households. The results of applying these models to the synthetic population is depicted in 
Table 4.  
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Figure 4. County-level percent of “trucks and SUVs” in first two vehicles in a household (left) 
and percent of households with two or more vehicles (right) 
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Table 4. Single-vehicle household vehicle body type assignment model 

Variable Level SUV Truck Van 

Constant 
-0.8849 -0.7798 -2.5946 

(0.00147) (0.00157) (0.00257) 

Household Size 
(Base = 1) 

2 
0.1672 -0.286 0.6703 

(0.00094) (0.00164) (0.00191) 

3 
0.2461 -0.3737 0.9453 

(0.00131) (0.00253) (0.00238) 

4 or more 
0.6272 -0.1471 1.9429 

(0.00132) (0.00257) (0.00199) 

Population 
Density 

(Base = 0-99) 

100-499 
-0.0259 -0.9801 -0.1448 

(0.00185) (0.00234) (0.00313) 

500-999 
-0.0245 -1.0041 0.1242 

(0.00201) (0.00266) (0.00322) 

1,000-1,999 
-0.1508 -1.4517 -0.7045 

(0.00182) (0.00254) (0.00343) 

2,000-3,999 
-0.216 -1.6152 -0.4437 

(0.00166) (0.0022) (0.00284) 

4,000-9,999 
-0.354 -1.5449 -0.8332 

(0.00162) (0.00202) (0.00285) 

Over 10,000 
-0.3355 -2.4712 -0.563 

(0.00176) (0.00329) (0.003) 

Residual Deviance 70,144,428 
AIC 70,144,488 
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Table 5. Multi-vehicle household vehicle body type assignment models 

  Vehicle 1 Vehicle 2 

Variable Level SUV Truck Van SUV Truck Van 

Constant 
-0.6041 -0.4205 -1.9947 -0.7289 0.6735 -2.0323 

(0.00158) (0.00171) (0.00292) (0.00183) (0.00151) (0.0032) 

Household 
Size 

(Base = 1) 

2 
0.2866 -0.1303 0.0542 0.2434 -0.5079 -0.0114 

(0.00146) (0.00164) (0.00285) (0.00169) (0.00141) (0.00306) 

3 
0.2533 -0.1602 0.1202 0.3873 -0.7582 0.2062 

(0.00154) (0.00176) (0.00302) (0.00175) (0.00155) (0.00318) 

4 or 
more 

0.5711 -0.2621 1.3697 0.5714 -0.6501 0.9906 

(0.00149) (0.00172) (0.00279) (0.00171) (0.00148) (0.00301) 

Population 
Density 
(Base =  

0-99) 

100-
499 

-0.0182 -0.4095 -0.2244 -0.0837 -0.4981 -0.1316 

(0.0011) (0.00123) (0.00182) (0.00122) (0.0011) (0.00195) 

500-
999 

-0.075 -0.7742 -0.3679 -0.203 -0.9781 -0.4504 

(0.00124) (0.00153) (0.00209) (0.00135) (0.00134) (0.00228) 

1,000-
1,999 

-0.2053 -0.9769 -0.434 -0.2441 -1.2213 -0.4395 

(0.00115) (0.00143) (0.00192) (0.00124) (0.00127) (0.00207) 

2,000-
3,999 

-0.2618 -1.0362 -0.4774 -0.3755 -1.5186 -0.4959 

(0.00106) (0.00129) (0.00176) (0.00116) (0.00119) (0.00189) 

4,000-
9,999 

-0.4675 -1.1824 -0.6666 -0.4624 -1.5919 -0.5347 

(0.00106) (0.00128) (0.00175) (0.00115) (0.00118) (0.00186) 

Over 
10,000 

-0.5946 -1.702 -0.5985 -0.551 -2.0829 -0.7171 

(0.0015) (0.00234) (0.00239) (0.00157) (0.00209) (0.00267) 

Vehicle 
Count 

(Base = 2) 

3 
-0.0848 0.1725 -0.2975 -0.1651 -0.0484 -0.1016 

(0.00071) (0.00092) (0.00124) (0.00076) (0.00083) (0.00127) 

4 or 
more 

-0.2292 0.3261 -0.5676 -0.1824 0.02 -0.208 

(0.00096) (0.00115) (0.00164) (0.001) (0.00108) (0.00163) 

Earlier 
vehicles 
(Contin-

uous) 

SUV 
- - - 0.0893 0.3324 -0.3471 
   (0.00074) (0.00079) (0.00131) 

Truck 
- - - 0.4411 -0.4621 -0.1563 
   (0.00091) (0.00117) (0.00167) 

Van 
- - - -0.269 0.1473 -0.3458 
   (0.00133) (0.00135) (0.00203) 

Residual Deviance 144,344,683 145,192,253 

AIC 144,344,755 145,192,325 
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Impact of Body Type on the Spatial Distribution of EVs 

The tools developed in this paper—a synthetic population optimized for EV adoption enriched 
with vehicle body type usable for any US geography—are unique among EV adoption models 
and will be developed further for future projects. In this project, we employ these tools to 
analyze the impact of different EV body type mixes on EV distribution in California. Both 
scenarios result in a large share of California households receiving at least one electric vehicle, 
as we consider a high electrification future with 6M out of California’s 13M households 
electrified. While the share of electrified households changes minimally in some aggregate 
views, there are significant local differences in EV clustering that are interesting to consider.  

Two body type mixes were analyzed: a “Small Vehicles” scenario with 6M private cars and 2M 
private trucks and a “Large Vehicles” scenario with 4M of each. Statewide electrification by 
demographic categories, such as income level and worker count, did not vary significantly 
between the two scenarios. Figure 5 depicts the average electrification by demographic 
categories. Error bars are not shown because the range of scenarios is <1.2% for all income 
levels and <0.5% for all levels of all other variables. 

Despite the slight differences in statewide variables, the body mix changes translate to large 
intraregional variation. The spatial differences are apparent when looking at two key metrics: 
the number of households that “electrify”—get at least one EV—and the number of two-EV 
households. 
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Figure 5. Statewide average electrification in Small and Large Vehicles scenarios across 
various demographic categories. 
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Electrified Households 

 

Figure 6. County-level household electrification in the Small Vehicles (left) and Large Vehicles 
(right) scenarios with rural counties outlined. 

Moving from the Small Vehicles to Large Vehicles scenario distributes EV households more 
uniformly across California and shifts EVs from urban to rural counties (Figure 6).  Los Angeles 
and San Francisco counties experience the largest drop in electrification with about 48,000 (-
1.5%) and 9,000 (-2.6%) fewer EV households (% of households electrified) respectively, but 
other counties in the San Francisco Bay and Los Angeles areas remain largely the same with 
electrification rates ranging from 47-52%. In contrast, northern California counties like Siskiyou, 
Lassen, or Trinity counties experience as much as a 7% increase in electrified households.  

The Small Vehicles scenario has a greater share of households in urban counties electrified at 
46.2% compared to rural counties’ 44.5%. The opposite is true in the Large Vehicles scenario, 
where 47.3% of rural county and 45.8% of urban county households have at least one electric 
vehicle. The Sacramento-Tahoe region (Figure 7) especially highlights this trend. While 
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electrification is high in the Small Vehicles scenario - certain tracts around Placerville have 50–
54% electrification rates—electrification in these same tracts jumps 5-7% in the large vehicles 
scenario.  

Electrification in DAC households is similar in both cases with slightly more electrified 
households in the Small Vehicles scenario with 40.2% instead of 39.9%. Both figures are 
significantly lower than the state overall, indicating that the environmental benefits of EVs are 
not equitably distributed in these cases. This result is not surprising as income is the largest 
driver in our electrification model. Notably, households in DACs that have electrified so far 
generally are not representative of their surrounding communities and often have higher 
incomes. (17). However, it is important to note that changes in commutes and other travel 
patterns will have important effects on local criteria pollutants, which itself is an input to DAC 
status, and further gains may be found by providing financial support for low-income and DAC 
households to purchase EVs. 

In certain areas of the state, DACs have higher electrification rates in the Large Vehicles 
scenario along with DAC-neighboring communities. This is the case in both the San Francisco 
Bay and the Central Valley areas (Figure 8 and Figure 9). Certain DACs in the Bay near San Jose 
and Fremont have about 50% electrification in the Small Vehicles scenario and have an 
additional 7% in the Large Vehicles scenario. Likewise, some tracts east of these cities start at 
about 50 or 55% electrification in the Small Vehicles scenario and an additional 10-11% in the 
Large Vehicles scenario. The scenario differences are even more stark when examining Central 
Valley DACs. In the Small Vehicles scenario, most of these communities only achieve 
electrification in the 30 to low-40% range but with the introduction of larger EVs, many of these 
tracts can electrify an additional 9-10%. 
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Figure 7. Electrification by Census Tract for the Sacramento-Tahoe region. Disadvantaged 
communities are outlined. 
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Figure 8. Electrification by Census Tract for the San Francisco Bay region. Disadvantaged 
communities are outlined. 
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Figure 9. Electrification by Census Tract for the Central Valley region. Disadvantaged 
communities are outlined. 

Two-EV Households 

Two-EV households are also more evenly distributed across the state in the Large Vehicles 
scenario (Figure 10). Both rural and urban counties have similar rates with 15.5% and 15.3% of 
households owning two EVs. In contrast, rural counties have 13.8% and urban counties have 
15.4% of households owning two EVs in the Small Vehicles scenario. Again, there is a negligible 
difference in statewide DAC figures in the two scenarios with 11.6% and 11.9% of households in 
the Large and Small Vehicles scenario doubly-electrified. 

Similar patterns continue in the San Francisco Bay area (Figure 11). DACs in this region have 
two-EV electrification rates ranging from about 2 to 25-26% in each scenario, but with 
significant Census-Tract-level variation between the scenarios. Some DACs have 2% fewer 
households with two-EVs while others have up to 8% more in the Large Vehicles scenario. Like 
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the single-EV case, larger EVs serve to move EVs away from densely populated areas and into 
sparser populated ones. 

 

Figure 10. County-level household two-EV electrification in the Small Vehicles (left) and Large 
Vehicles (right) scenarios with rural counties outlined. 
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Figure 11. Two-EV electrification by Census Tract for the San Francisco Bay region. 
Disadvantaged communities are outlined. 

Home-Charging 

Home-charging access does not change drastically between the two scenarios for electrified 
households or two-EV households. Rural households generally have higher levels of home-
charging access when compared to urban households. Moving from the Small Vehicles to Large 
Vehicles scenario causes access to home-charging to slightly rise in both rural and urban 
counties, for both electrified households in general and two-EV households. In the Small 
Vehicles scenario, 71.6% of urban electrified households and 79% of rural electrified 
households have home-charging while these figures rise to 72.5% and 79.4% respectively. 
Similarly for two-EV households, 79.9% of urban and 84.6% of rural households have home-
charging in the Small Vehicles scenario while 80.7% of urban and 84.9% of rural households 
have home-charging in the Large Vehicles scenario. Home-charging access is similar or rises 
between the two scenarios regardless of urban/rural classification because households with 
trucks and SUVs tend to live in housing types with greater home-charging access. An important 
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caveat for these figures is that they do not consider charger congestion in two-EV households. 
Thus, while these households may be able to charge an EV, they still may not be able to meet 
all their charging needs at home. 

A similar trend continues for DAC and non-DAC communities. While DAC households have 
lower access to charging than non-DAC households, moving from the small to large vehicles 
scenario increases home-charging access rates for both groups, with a smaller increase in DAC 
households than non-DAC households. In the small vehicles scenario, 69.2% (73.2%) of DAC 
(non-DAC) households have home-charging access while 69.9% (74.2%) of them have access in 
the large vehicles scenario. Access in two-EV DAC (non-DAC) households is similar with 78.2% 
(80.9%) in the small vehicles and 78.8% (81.7%) in the large vehicles scenarios having access. 
While access may be rising, it is important to note that it is likely because EVs are shifting 
towards households with single-family homes who also tend to be more affluent and own SUVs 
and trucks.  

  

Figure 12. Home-charging access in electrified households. Rural counties are outlined. 



 

 28 

 

Figure 13. Home-charging access in two-EV households. Rural counties are outlined. 

Implications 

While the aggregate differences in electrification between rural and urban counties or DACs 
and non-DACs is not large between the two body type scenarios, the specific spatial variation 
can have important implications. Most apparent is the impact on regional charging 
infrastructure and energy demand. Not only will larger EVs be distributed more widely than 
smaller ones, but they will necessarily require more energy to charge. Combined with 
differences in the ways these vehicles are used, this could result in drastically different charging 
patterns. While Level 1 charging is widely available, larger EVs that are used to commute or are 
driven often may find little benefit from low-speed charging and instead require Level 2 
charging. Any increase in electrification in smaller communities due to the availability of larger 
EVs could have outsized, magnified impacts on local electric demand due to these factors.  

Vehicle body type preference is an important driver of the distribution of EVs in this model, 
thus more complex models of vehicle body type assignment could be incorporated in the future 
to discover additional fine-scale regional patterns. This paper utilizes the NHTS to create a 
model flexible enough for any US geography, but specific regional vehicle data could be 
introduced to capture local vehicle trends. Additionally, more sophisticated vehicles assignment 
models could be substituted to improve body type assignment accuracy. Mixed logit or multiple 
discrete-continuous extreme value (MDCEV) models are just a few of the alternatives available. 
Moreover, we plan to integrate vehicle age in future model versions to target households with 
a propensity for frequent vehicle purchases.  

Finally, the electrification model can be further developed to consider additional scenarios or 
policy implications. Incorporating household vehicle purchase decisions—which households 
purchase vehicles often and whether they are new or used vehicles—will be important in 
further refining this model. The electrification methodology we develop can be modified to test 
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the impact of various policy scenarios on EV adoption, such as subsidies or incentives that 
reduce the burden of low-income households purchasing and owning an EV or increased 
incentives for multi-unit EV charging which will allow apartment dwellers to more easily access 
EVs.  

Conclusion 

The availability of EVs in all body types is essential to decarbonizing personal transportation. 
Thus far, most EVs have been passenger cars, but future electric trucks and SUVs will be critical 
to bringing EVs to more communities, to rural areas, and for non-commute uses. A greater 
variety of body styles will hasten the transition to zero-emission vehicles and help distribute 
their environmental benefits, but special attention is needed for their impact on local energy 
demand and equity. The synthetic population developed in this paper is uniquely suited to 
examine EV adoption at both fine spatial and demographic scales. By enriching this synthetic 
population with both vehicle body type and home-charging access, we have developed a tool to 
help predict electrification at the local level anywhere in the United States. This level of 
resolution is necessary to plan for charging infrastructure and anticipate environmental justice 
concerns. As EVs are critical to greenhouse gas emissions reduction and local air quality, it is 
critical to ensure that the environmental benefits of EVs are equitably distributed. 

Changing EV body types will dramatically change charging demand. While EV adoption so far 
has concentrated in densely populated urban centers, increases in electric SUV and truck sales 
has the potential to expand EV ownership in sparser suburban and rural areas. Combined with 
the greater energy needs of these vehicles due to larger battery sizes and lower energy 
efficiencies, larger EVs have the potential to stress local electric grids without proper 
forecasting tools. The change in the EV market highlights the need for more modelling to 
predict energy demand. 

When considering a high electrification scenario for California with 8M EVs and 6M households 
electrified, we find that EVs shift away from huge population centers like Los Angeles and San 
Francisco and increase in lower-density communities around the state especially in Northern 
California and the Central Valley. In future modelling, we will consider vehicle age, as most of 
the 8M EVs in 2030 will come from new car sales. Additionally, more research is needed on 
commute patterns and vehicle usage which will greatly impact the energy needs of new EVs 
and access to workplace-charging. Lastly, we plan to incorporate more extensive modelling of 
chargers and charging events. While we consider access to home-charging, more work is 
needed on charger congestion in multi-EV households, workplace charging, and public charging 
and the total charging needed for electrification.   
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Data Summary 

Products of Research  

Data used in this report come from three main sources: the 2015–2019 five-year American 
Community Survey (ACS) and associated Public Use Microdata Samples (PUMS), a nationwide 
National Renewable Energy Laboratory (NREL) survey on residential charging access, and the 
2017 National Household Travel Survey (NHTS). This report uses an earlier version of the NREL 
survey that was provided upon request prior to its publication. These data sources were used to 
generate a synthetic population of households for California. 

Data Format and Content  

The data are in multiple formats. 

2015-2019 ACS Summary Tables: CSV tables for regional totals for household variables (Vehicle 
Count, Income, Housing Type, Housing Tenure, Worker Count, and Household Size) and 
individual variables (Gender and Age) 

2015-2019 ACS PUMS: Comma delimited (CSV) set of records from individual people or housing 
units that are representative at the public use microdata area (PUMA) level. 

2017 NHTS:  CSV files with household, individual, and vehicle characteristics and travel 
behaviors. 

NREL survey: CSV file with housing type and corresponding home charging availability 
probabilities. 

Synthetic Population: CSV file with following variables: 

• scenario: body type electrification mix considered 

• geo: census tract geographic identifier 

• unique_id_in_geo: unique identifying number 

• ev1: probability of the first vehicle being electric 

• ev2: probability of the second vehicle being electric 

• workers: number of workers in the household 

• vehicles: number of vehicles in the household 

• tenure: household tenure (own or rent) 

• income: household income 

• size: household size 

• veh1: vehicle body type of the first vehicle in the household, augmented variable 

• veh2: vehicle body type of the second vehicle in the household, augmented variable 

• charging: access to home charging (Y = Yes/N = No), augmented variable 
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Data Access and Sharing  

2015-2019 ACS Summary Tables: The following ACS tables were used and are available at 
data.census.gov: 

• B08203 – Worker count and vehicle count marginals 

• B25124 – Housing tenure, household size, and housing type 

• B19001 – Income 

• B01001 – Gender and Age 

The tables were retrieved using the R package “tidycensus” 

Walker K, Herman M (2022). tidycensus: Load US Census Boundary and Attribute Data as 
'tidyverse' and 'sf'-Ready Data Frames. R package version 1.2.2.9000, https://walker-
data.com/tidycensus/ 

2015-2019 ACS PUMS: Available at https://www2.census.gov/programs-
surveys/acs/data/pums/2020/5-Year/  

2017 NHTS:  Available at https://nhts.ornl.gov/  

NREL survey: Data table and supporting presentation available at 
https://github.com/tramadoss/ev-syn-pop/tree/main/nrel  

Synthetic Population: Data table available at: https://doi.org/10.25338/B8T066. Documentation 
available at https://github.com/tramadoss/ev-syn-pop/ 

Reuse and Redistribution  

There are no restrictions on the use of the data. Data should be cited using the following 
suggested citation: 

Ramadoss, Trisha; Tal, Gil; Davis, Adam (2023). Synthetic population – Democratization of 
electric vehicle charging infrastructure [Dataset]. Dryad. https://doi.org/10.25338/B8T066 

https://walker-data.com/tidycensus/
https://walker-data.com/tidycensus/
https://www2.census.gov/programs-surveys/acs/data/pums/2020/5-Year/
https://www2.census.gov/programs-surveys/acs/data/pums/2020/5-Year/
https://nhts.ornl.gov/
https://github.com/tramadoss/ev-syn-pop/tree/main/nrel
https://doi.org/10.25338/B8T066
https://github.com/tramadoss/ev-syn-pop/
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